
CriStore: Dynamic Storage System for Heterogeneous
Devices in Off-site Ubiquitous Communities

Hyunbin Lee YongJoo Song Kyungbaek Kim Donggook Kim Daeyeon Park
Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology (KAIST)
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

{hblee, yjsong, kbkim, dgkim}@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

ABSTRACT
Most researches for ubiquitous services have been interested
in constructing intelligent environments in physical spaces
such as conference hall, meeting room, home, and campus.
In these spaces people are able to share data easily. However,
as cooperative works from a distance make a social issue, we
need a data sharing system for an “off-site” community that
is a group of people with a common interest and purpose in
different ubiquitous places like a remote conference/meeting.
In this paper, we propose a dynamic storage system, Cri-
Store for heterogenous devices of the off-site communities,
which autonomously builds a distributed shared data space
and keeps a flexible overlay topology of the participant de-
vices according to the devices’ capabilities. CriStore also
performs file operations fitted to the capabilities.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
distributed file systems

General Terms
Design

Keywords
Dynamic Storage System, Off-site Ubiquitous Community,
Heterogeneity, Self-organizing, Flexible Overlay Topology

1. INTRODUCTION
Most of ubiquitous computing researches so far, focus on

constructing next generation computing environments [2, 4]
in geographic regions with limited and well-defined physical
boundaries like home [11], meeting room [12], conference hall
[10], and campus. The ubiquitous environment is composed
of an intelligent space containing appliances (video projec-
tors, lighting sensor, etc), powerful stationary servers, and
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wireless handheld/wearable devices. Users interact with the
space, which provides various services such as data shar-
ing and location detection. In these ubiquitous surround-
ings, the mobile devices are increasing, both in number and
diversity [1, 14] as hardware becomes more compact and
more powerful by the evolving technologies and designed for
diverse applications. The heterogeneity of devices stands
for different capabilities in terms of processor performance,
memory and storage capacity, display size, network connec-
tivity, and battery power. Thus there are not only strong
devices like laptops and desktop computers holding plenti-
ful resources but also weak devices such as PDAs, smart
phones, and so on.

Having the manifold devices in the same space, a group
of people with a common interest or a specific purpose is
able to share the data via the ubiquitous environment. How-
ever, people who are located in different ubiquitous places or
where there are no ubiquitous environments (except wired/
wireless networks) may also desire to share the distributed
data each other with only their devices: for example, remote
conference/meeting among members in variant regions, re-
search data sharing among students in different universities,
and multimedia file sharing among people who live in diverse
areas. We call the latter group an “off-site” ubiquitous com-
munity from now on. The off-site community is generally
temporal and heterogeneous. The community is suddenly
organized for aims like above the examples and broken up
after completing its cooperative work. The devices of the
participants are various and someone can use multiple de-
vices. The off-site community with these two characteristics
requires that a storage system must be able to autonomously
build a distributed shared data space without specific static
servers and keep a flexible overlay topology depending on
the heterogeneity of the devices. We propose a file system
layer approach so that every ubiquitous framework and ap-
plication makes use of the storage system without special
libraries and recompiling.

In this paper, we propose CriStore, a dynamic storage sys-
tem for the data sharing and adapted streaming in the off-
site ubiquitous community with the various devices. To sim-
ply construct a shared data space in the dynamic manner,
CriStore self-organizes an overlay topology of the devices
without the static file servers. Moreover our system recog-
nizes the heterogeneity of the participant devices including
processor performance, memory/storage capacity, network
connectivity and battery power. Each CriStore device acts
as a server or a client according to the device’s capabilities.
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The powerful devices construct a “ring server group” with
a ring-shaped network topology, and this ring server group
provides the data sharing and the adapted streaming ser-
vices to the weak devices working as the clients. The server
group manages the whole shared data for the off-site com-
munity and guarantees both of availability and consistency.
The clients on the feeble devices just access the remote data
by using streaming protocols with a content adaptation for
fitting the original data to capabilities and preferences of
the devices.

The rest of this paper is structured as follows. Section 2
discusses related work. Section 3 outlines the design of Cri-
Store. We describe the detailed implementation in Section
4. Finally, Section 5 concludes this paper.

2. RELATED WORK
In order to understand the challenges posed by the auton-

omy and the heterogeneity of the off-site ubiquitous commu-
nity, let us begin by considering the previous distributed file
systems. The existing systems are divided into two cat-
egories: one is the system with static file servers such as
Coda [5, 6] and AFS [7, 8]. The other is the system without
the static servers such as xFS [13] and Segank [9].

The system with the static servers consists of client-only
nodes and server-only nodes. All shared data is stored on
the dedicated static server nodes which provide the shared
data space. If a client node wants to share the data with
other ones, it should store the data at the server node. Thus
if a new off-site community is formed, it must establish the
static server nodes to accept and accommodate the client
nodes. Especially in the case of Coda and AFS mostly used
by the existing ubiquitous frameworks, a skilled administra-
tor is required to build the systems and manage the server
nodes. It is not autonomous for general users to establish
the static servers whenever they form the community tem-
porally. The static server approaches have another problem
in the heterogeneity. Since Coda and AFS assume that the
client node is a strong device like a personal computer and
a powerful laptop, the client node caches a entire file read
from the static server node in its local storage for later ac-
cesses with less network traffic. It is the high overhead to
the weak client node as the cached file size becomes large.
While the client device is caching a large file like a multime-
dia file, applications concurrently running on the device may
be blocked by the burst writes to the storage. Moreover the
device with the low computing capabilities would be hard
to instantly uncompress the multimedia file encoded by a
compact codec like DivX, AVI and MPEG. If the device has
the small storage capacity, it can not even cache the file in
its local storage.

The serverless approaches use the wholly distributed ar-
chitecture. Since the peer devices communicate with each
other directly, the serverless system autonomously constructs
the shared data space with no dedicated static servers. xFS
is comprised of the client-mode devices and the server-mode
devices without the static servers. xFS clusters the high
capable devices into a server group and operates based on
the cooperated cache: it uses all main memory of the pow-
erful server-mode devices to share the data in a fast LAN.
However, the network of the off-site communities is not the
local area but non-uniform wide area where diverse network
links exist. It is the critical problem that the data access of
the devices using xFS in the WAN may be delayed by the

networks.
Segank is devised for storage elements connected by the

heterogeneous networks unlike xFS. The Segank users are
able to aggregate data blocks of a desired file from a num-
ber of widely distributed devices using a multicast tree called
Segankast. However it is large overload to construct the mul-
ticast tree and gather the dispersed data blocks whenever
reading the file. The weak devices with the low computing
capabilities are hard to run the Segank system. Further-
more, as designed for a personal storage, Segank is not suit-
able to the multi-user environment of the off-site community.
For the consistency of the data accessed by the personal user,
Segank requires each user to carry a small device, MOAD
which records the sequence of write operations.

3. SYSTEM DESIGN
We design the dynamic storage system for the off-site

ubiquitous community with the heterogeneous devices, Cri-
Store that performs proper operations fitted to the devices’
capabilities. When a device enters into the off-site commu-
nity, it is classified into a server of the ring server group
or a client according to its computing capabilities, battery
power, and network connectivity. The powerful devices con-
structs the server group as a core system to provide the
distributed shared data space to the weak devices without
the static servers. In Figure 1 the personal computer A,
B and the power supplied laptop C with the high proces-
sor clock and the large memory/storage capacity organize
the ring server group with the optimal network connectivity
between the servers. The mobile device Z with the low ca-
pabilities acts as the client. The operating systems are able
to detect these hardware capabilities via bios interfaces and
device drivers. CriStore stores a configuration file including
personal preferences as well as the client’s capabilities: the
client’s capabilities and the personal preferences are abbre-
viated to “CC/PP” from this time.

client Z

clients

ring server group

server A

server B

server Cclient Z

clients

ring server group

server A

server B

server C

Figure 1: CriStore Overlay Topology

The devices of the ring server group can autonomously
organize their ring-shaped network topology by themselves.
Even though traditional distributed systems exploit existing
structured peer-to-peer topologies [3, 16] for scalability, we
select the simple ring topology because we assume that the
size of the off-site community is not large: it consists of
dozens of the various devices. Moreover file systems using
the peer-to-peer like Ivy [15] have the critical problem of
high overhead due to aggregating data blocks of a file from
modification logs whenever reading the file.

To provide the transparent data sharing, this ring server
group maintains all shared file information including name,
location and version. The file name and location like an
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IP address are used to search the shared file among many
servers. The file version composed of a version count and
an IP address is used to check the data consistency between
the devices. To optimize and keep the ring topology, the
ring server group also maintains locations of all servers and
every network link cost between the neighbor servers via
ping operations.

Each CriStore device should know at least one IP address
as a “connection point” in order to access to the ring server
group. The device requests a new connection to a “target
server” among the connection points. Diverse applications
on CriStore do general file operations such as reading mul-
timedia files and writing text files. CriStore accesses the
shared file by the streaming protocol based on a block read
request protocol, and the accessed files become adapted to
the device’s capabilities. The device can cache the file read
from the ring server group or discard the file depending on
its capacity or demand.

4. IMPLEMENTATION

4.1 System Overview

Kernel

local storage

user program RSM

TCP

To remote RSM

CAM

CriFS

VFS layer

Kernel

local storage

user program RSM

TCP

To remote RSM

CAM

CriFS

VFS layer

Figure 2: CriStore Architecture

Figure 2 shows our CriStore architecture. CriStore com-
prises three modules which are core kernel module, ring sup-
port module, and content adaptation module. The core ker-
nel module, CriFS as a file system basically handles VFS
operations like open, read, and write and mediates shared
data accesses. It communicates with the local and remote
ring support modules for the file operations and selectively
caches the accessed data in its local storage. CriFS also
detects the hardware capabilities and records them in the
CC/PP file. To simplify our implementation, we perform
both the ring support module and the content adaptation
module in application-level daemon. The ring support mod-
ule, RSM recognizes its own capabilities from the CC/PP,
and self-organizes the ring server group or acts as the client.
RSM also supports the availability and the consistency of
the shared data among every device and recovers the ring
topology resiliently when a server crashes down. The con-
tent adaptation module, CAM in the ring server group trans-
forms the original data into another one adequate for the de-
vice’s capabilities. More detail operations and mechanisms
are described in the following section.

4.2 Self-organizing Ring Server Group
Every RSM of the ring server group maintains the ring

topology by keeping each connection with RSMs of imme-

diate fore and back neighbor servers. In Figure 3 counter-
clockwise servers of the ring imply the fore neighbors and
clockwise servers imply the back neighbors. RSM of the
servers has current ring topology information in order that
a new joining server finds an optimal network connectivity
and rearranges the ring topology. The ring topology infor-
mation contains IP addresses of all the servers and every
network link cost from the neighbor servers. Server-side
RSM periodically measures round trip time to the neigh-
bor servers using the ping operations, and transmits the
recorded network state information to all the servers via the
ring or piggybacks it in sent other packets to the next server.

server B

server C

server A

joining server D
fore

back

6

2

3

4

1

ring server groupserver B

server C

server A

joining server D
fore

back
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ring server group

Figure 3: Join Process to the Ring Server Group

Figure 3 illustrates the sequence of a join process to the
ring server group. The numbers in the figure represent the
network link cost between two servers. If a device (D) as a
server joins a target server via the already known connection
points, the target server notifies the ring topology informa-
tion to the device. The device compares all the previous
network link costs with the new link cost, and it selects a
new target server for the optimal ring topology as the follow-
ing algorithm. Because the network link between the servers
is identical with a backbone of the entire systems, the ring
server group optimally reconstructs its topology.

Algorithm 4.1: select new target server(all link costs)

// i means the ith server
// (x, y) stands for the network link cost between x and y

for (from i = 0 to n, i++) {
if (((new device, i) + (new device, i+1))− (i, i+1) ≤ 0) {

return the ith server
}

}
return the random server

If the new target server (A) is determined by the algo-
rithm, the server accepts the joining device as a new back
neighbor (D) and transmits a “rejoin” message to the pre-
vious back neighbor (C) to update the ring server group.
Receiving the rejoin message which has the IP address of
the new device (D), the previous back neighbor (C) breaks
up the prior connection of the fore neighbor server (A) and
requests the new connection to the joining device (D) as a
new fore neighbor (D). After completing the new ring topol-
ogy, the joining device checks cache consistency with the ring
server group. The device sends its own shared file informa-
tion via the ring and receives the shared file information of
the ring server group from the target server. A leave pro-
cess from the server group is equal to the reverse of the join
process.
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4.3 File Operations
The difference between the file operations on the client

and those on the server is whether the CriStore device ac-
cesses the shared file via the target server or not. In the
case of the server, CriFS directly accesses the file using the
shared file information without help of the target server. In
this section we describe the file operations on the client.

CriStore does the file-based operations like Coda and AFS
in order to reduce complexity of the operations and the
amount of network traffic. When opening the shared file ac-
cessed by the applications, CriFS recognizes whether the file
exists in the local storage or the remote ring server group. If
the applications want to read the file that is not cached in the
local storage, CriFS requests the file to the ring server group
via the target server using a block-based remote read proto-
col that is designed for a random play on a streaming service.
In the beginning of the remote file request, CriFS sends the
CC/PP information once to the target server. CAM of the
server uses this CC/PP information to transform the orig-
inal file into another one adequate for the client’s capabili-
ties. CriFS can also selectively cache the file received from
the ring server group based on the client’s capabilities or de-
mand. On the other hand if the shared file required by the
applications is cached in the local storage on the opening
time, CriFS not only transmits the CC/PP information but
also queries the version information of the original file in the
target server in order to compare the version of the local file
with that of the remote file. If the file in the local storage is
obsolete, CriFS discards the old file and reads the updated
file again from the target server. If the target server has
no file required by the client, it searches the closest server
having the file using the shared file information and the ping
operations, and relays the file to the client. At this “relay
read operation”, the target server caches the file taken from
other server and it acts as a proxy server for the sake of
temporal locality. Similarly the client changes its connec-
tion point to new one where the file frequently accessed by
it exists after several relay read operations for the proximity
between the client and the server.
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client A
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exist or not
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version info.

block request

adapted data
cache or not
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Figure 4: Read Operation

On writing a new file created by the applications, CriFS
stores the file not only in the target server but also in the
local storage if the client is capable to cache the file. If
the applications update the file, CriFS sends modified data
blocks of the file to upper-layer RSM via a socket in order
to transmit the modified data blocks to the target server.
RSM queues modification logs in its memory, which mean
aggregated file operation logs containing the modified data

blocks. It transmits all the modification logs to the tar-
get server when the log size exceeds threshold bytes or the
predetermined time is expired. This burst transmission re-
duces the energy consumption at the network interface of
the mobile devices and helps the devices to work on an even
disconnected network link. Using the logs passed to the ring
server group via the target server, each server updates the
modified file and its version information. This operation is
more and less lazy, but it is not the crucial problem because
the members of the off-site community are not large and
generally the write operations are still smaller than the read
operations.

server Bclient A

write “/crifs/b.txt”

send modification logs

/crifs/b.txt

CriFS

RSM

local storage

/crifs/b.txt

CriFS

RSM
delete b1

insert b1

server Bclient A

write “/crifs/b.txt”

send modification logs

/crifs/b.txt

CriFS

RSM

local storage

/crifs/b.txt

CriFS

RSM
delete b1

insert b1

Figure 5: Write Operation

4.4 Cache Management
Reading the shared file from the remote server, the con-

ventional distributed file systems such as Coda and AFS
cache the entire file in their local storage by all means. The
reason is that the systems exploit the cached file on the
disconnected network link and reduce the network traffic
occurred whenever reading the same file from the server.
However, reading the file from the server and caching the
file in the local storage at the same time may impose the
high processing overhead on the device and causes a spatial
problem if the device has not enough space of the storage.
Thus CriFS makes the decision whether it caches the file
received from the server or not according to the device’s ca-
pabilities. In addition because the users usually read the
head of a file only to confirm if the file is the exact one,
CriFS forks a background kernel thread starting to cache
the file after the read data blocks of the file exceed the cer-
tain threshold amounts.

4.5 Cache Consistency
CriFS needs a mechanism to guarantee the cache con-

sistency through the version in the shared file information
because some CriStore devices in the off-site community are
able to cache and concurrently update the same files. This
version information consists of the reusable 64-bit version
count and the user IP address. Whenever a file is modified,
the version count increases one by one for representing the
recent one. If several users of the community attempt to
update the distributed files concurrently, the updated files
have the same version count but the different user IP address
in the version information. In this collision case, CriStore
creates another file with a new file name which has with
a postfix “.ver[i]” at the end of the original name except
the file type (e.g., sample.ver[1].txt). The integer count i is
initialized to zero and increased one by one whenever the
collision between the files occurs. Later the users can select
the desired one from the files having the different extended
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name. This approach has the lower latency than the ap-
proach using a lock on the writing time like a token ring.

4.6 Fault Tolerance
Every member of the ring server group knows the entire

ring configuration (n “connection points”of the fore servers
counterclockwise within the ring) based on the ring infor-
mation. If a neighbor server crashes, RSM detects the dis-
connection and then reconnects to the nearest one among
the fore servers. After completion of reconstructing the new
ring topology, RSM updates the shared file information and
checks its version information to keep the cache consistency
among the servers. On a client crash, CriStrore has only to
be just rebooted and check the cache consistency because
all shared data that the client has exist and are managed in
the ring server group.

4.7 Content Adaptation
The content adaptation is a kind of stream service that

transforms the original data to another one fitted to the de-
vice’s capabilities and commonly applied to a read-only or
multimedia file in the server. When a device tries to access
the shared file, CAM of the server handling the request ex-
ecutes the content adaptation based on the device’s CC/PP
information. CAM determines the stream quality according
to the CC/PP, and provides the adapted file to the device.
CAM also stores the transformed file in the local storage of
the server so that the server sends the stored file to other de-
vices without the transformation overhead when the devices
having the similar capabilities request the same file later.

5. CONCLUSION
In this paper we propose a dynamic storage system that

is designed for heterogenous devices of “off-site” ubiqui-
tous communities. CriStore autonomously constructs a dis-
tributed shared data space without static servers. Every
applications on CriStore is able to perform general file op-
erations and transparently access shared files any where.
CriStore also supports a flexible network topology of the
devices according to their capabilities. More powerful de-
vices self-organize a “ring server group” as a core system,
which provides a stream service fitted to the device’s capa-
bilities by a content adaptation. Moreover CriStore with
a selective cache management guarantees cache consistency
and fault tolerance. Furthermore, if CriStore device act-
ing as the server exhausts its battery power, the devise can
dynamically convert server mode to client mode. CriStore
consequently considers an energy-efficiency as well as a per-
formance of the entire system.
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